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Decarestrictines represent a family of novel 10-membered lac-
tones produced by different strains of Penicillium.1 So far, six com-
ponents of the family of decarestrictines have been identified. The
identical carbon skeleton that constitutes a 10-membered lactone
ring varies in the oxygen patterns ranging from carbon 3–7 and
the presence of one E-configured double bond located either at
C-4 or at C-5. This seems to be a result of dehydration during bio-
synthesis. The decarestrictines show interesting activity in cell line
tests with HEP-G2 liver cells2,3 due to an inhibitory effect on cho-
lesterol biosynthesis. Against this backdrop, we embarked on a
program to synthesize some members of this class of compounds.
Earlier, we accomplished the total synthesis of the most potent
member of this family, decarestrictine D4a and other bio-active
10-membered macrolides as well.4b,4c Later we took up the synthe-
sis of decarestrictine O for two reasons. The first one being, to the
best of our knowledge, so far no synthesis has been reported for 1
and the other one is to accomplish a total synthesis involving RCM
(of 2, Scheme 1) as the key reaction. Though 10-membered macro-
lides were earlier synthesized via RCM,5 their synthesis through
RCM is still a challenging proposition because such a strategy is
highly dependent on substrate as well as on its compatible protect-
ing groups at allylic positions besides the low predictability of the
olefin geometry. Herein we report the first stereoselective total
synthesis of decarestrictine O 1 by a convergent strategy wherein
both the advanced intermediates are derived from the inexpensive
starting materials viz. 1,3-propanediol and propylene oxide.
ll rights reserved.
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Our strategy relies on Jacobsen kinetic resolution, Sharpless
asymmetric epoxidation, Yamaguchi esterification, and ring-clos-
ing metathesis (RCM) as the key steps. Retrosynthetic analysis re-
veals that the target compound 1 (Scheme 1) can be obtained from
RCM of diene 2 and subsequent deprotection of PMB-group, diene
2 in turn, could be obtained from Yamaguchi esterification of 4 and
3. Acid 3 can be realized from epoxy alcohol 6 which in turn could
be obtained starting from 1,3-propanediol by simple chemical
transformations. And hydroxy alkene 4 can be realized from pro-
pylene oxide through simple chemical transformations.

Accordingly, the synthesis of 1 starts with known allylic alcohol
56 (Scheme 2) from propanediol that was subjected Sharpless
asymmetric epoxidation once with [(+)-DIPT/Ti(OiPr)4/cumenehy-
droperoxide/�20 �C] to afford epoxy alcohol 67 (75%) which was
converted to allylic alcohol 7 by a two step process; first by con-
verting to chloro epoxy compound which on Na/ether mediated-
elimination afforded the allylic alcohol 7 (75% yield over two
steps). The hydroxyl group in 7 was protected as its PMB ether
(PMB-Br/NaH/THF/0 �C to rt) to afford 8 (90%), and the TBDPS
group in 8 was deprotected with TBAF in THF to afford primary
alcohol 9 (91%) which were converted to acid 3 by a two-step
process firstly; to an aldehyde by Swern oxidation and then by
perchlorite oxidation (NaClO2/NaH2PO4�2H2O/t-BuOH/2-methyl-
2-butene) to afford acid 35a (80% over two steps).

Hydroxy alkene 4 (Scheme 3) was synthesized from the
known chiral propyleneoxide8 and its ring-opening reaction with
THP-protected propargyl alcohol followed by protection–deprotec-
tion-LAH reduction gave the allylic alcohol 10 in good yields.
Allylic alcohol 10 on benzoylation under conventional conditions
followed by Sharpless dihydroxylation (AD-mix-a) and protection
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Scheme 2. Synthesis of acid 3. Reagents and conditions: (a) (+)-DIPT, Ti(OiPr)4, cumenehydroperoxide, CH2Cl2, �20 �C, 12 h, 75%; (b) (i) CCl4, Ph3P, NaHCO3, reflux, 1 h, (ii) Na/
ether, ether, 0 �C to rt, 3 h (75% over two steps); (c) PMB-Br, NaH, THF, 0 �C to rt, 12 h, 90%; (d) TBAF, THF, 0 �C to rt, 2 h, 91%; (e) (i) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C, 1 h;
(ii) NaClO2, NaH2PO4�2H2O, t-BuOH/2-methyl-2-butene (3:1), 0 �C to rt, 12 h, 80% for two steps).
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Scheme 3. Synthesis of alcohol 4. Reagents and conditions: (a) Ref. 8; (b) (i) Bz–Cl, Et3N, 0 �C to rt, (ii) AD-mix-ß, 75%, (iii) 2,2-DMP, CH2Cl2, PTSA; (c) K2CO3, MeOH, 2 h (75%
over three steps); (d) (i)(COCl)2, DMSO, Et3N, CH2Cl2, �78 �C, 1 h, (ii) Ph3PCH3

þI� , KOt-Bu, THF, 0 �C, 8 h, 78% (over two steps); (e) DDQ, CH2Cl2/H2O (19:1), rt, 1 h, 93%.
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Scheme 1. Retrosynthetic analysis.
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Scheme 4. Reagents and conditions: (a) 2,4,6-trichlorobenzoyl chloride, Et3N, THF, 0 �C to rt, 4 h, then DMAP, 4, toluene, 0 �C to rt, 12 h, 88%; (b) Grubbs’ II generation catalyst
(10 mol %), CH2Cl2, reflux, 12 h, 75%; (c) TFA, CH2Cl2, rt, 1 h, 68%.
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of the ensuing diol as acetonide afforded compound 11 (75% over
three steps). Compound 11 on debenzoylation, Swern oxidation
followed by 1C Wittig olefination (Ph3PCH3

þI�/KOt-Bu/THF) affor-
ded epoxy alkene 13 (78% over two steps). The PMB-group in 13
was deprotected with DDQ in CH2Cl2/H2O to obtain intermediate
4 (93%).

With two building blocks 3 and 4 in hand, the next task was to
couple them as ester (Scheme 4) under Yamaguchi esterification
protocol9 (2,4,6-trichloro benzoyl chloride/Et3N/THF then DMAP/
toluene) to afford the diene 2 (88%). The diene 2 underwent RCM
smoothly using Grubb’s II generation catalyst to yield lactone10

14 (75%) as a chromatographically separable mixture in 80:20 ratio
in favor of E-isomer. The compound was characterized by its spec-
tral data.11 The geometry of the olefin was established as ‘E’ from
its coupling constants, while one of the olefinic proton appeared
at d 5.75 ppm as a double doublet (J = 8.3, 15.6 Hz) and the other
one showed at d 5.57 ppm as a double doublet (J = 9.3, 15.6 Hz). Fi-
nally lactone 14 on global deprotection of PMB ether and acetonide
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(TFA/CH2Cl2/rt/1 h) afforded the final product decarestrictine O (1,
68%). The spectral data of the synthetic compound matched with
the literature values.3,11

In summary, we accomplished the first total synthesis of deca-
restrictine O via the RCM protocol.
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J = 7.2 Hz, 1H, –OCH), 3.92 (t, J = 7.2 Hz, 1H, –OCH), 3.77 (s, 3H, CH3), 3.65 (hex,
J = 4.1 Hz,1H, –OCH), 2.56 (dd, J = 8.3, 14.5 Hz, 1H, CH2), 2.41 (dd, J = 6.2,
15.6 Hz, 1H, CH2), 1.85 (quin, J = 6.2 Hz, 1H, CH2), 1.72–1.65 (m, 1H, CH2), 1.34
(d, J = 15.6 Hz, 6H, CH3), 1.22 (d, J = 6.2 Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3):
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6.82 (d, J = 8.3 Hz, 2H, Ar-H), 5.75 (dd, J = 8.3, 15.6 Hz, 1H, olefinic), 5.57 (dd,
J = 9.3, 15.6 Hz, 1H, olefinic), 5.10 (m, 1H, –OCH), 4.53 (d, J = 12.4 Hz, 1H,
OCH2Ph), 4.33–4.23 (m, 2H, –OCH), 3.93–3.83 (m, 4H, –OCH), 3.79 (s, 3H, CH3)
3.72 (t, J = 8.3 Hz, 1H, –OCH), 2.82 (dd, J = 9.3, 12.4 Hz, 1H, CH2), 2.51 (dd,
J = 3.1, 13.5 Hz, 1H, CH2), 2.33–2.25 (m, 1H, CH2), 1.75 (d, J = 15.6 Hz, 1H, CH2),
1.4 (d, J = 9.3 Hz, 6H, CH3), 1.28 (d, J = 6.2 Hz, 3H, CH3); 13C NMR (75 MHz,
CDCl3): d 169.9, 134.3, 133.6, 131.3, 130.9, 129.1, 114.0, 113.6, 109.2, 84.1,
74.5, 70.6,68.4, 55.4, 43.2, 33.2, 29.6, 27.1, 18.7; HRMS m/z [M+Na]+ found
399.1772 calculated 399.1783 for C21H28O7Na. Compound 1: thick syrup; ½a�25

D
�18.5 (c 0.20, CH3OH); 1H NMR (500 MHz, acetone-d6): d 5.55 (dd, J = 7.1,
16.3 Hz, 1H, olefinic), 5.39 (dd, J = 8.1, 16.1 Hz, 1H, olefinic), 5.01 (m, 1H, -OCH),
4.57 (br s, 1H, –OH), 4.45 (m, 1H, –OCH), 4.26 (m, 1H, –OCH), 4.03 (br s, 1H,
–OH), 3.45–3.40 (m, 1H, –OCH), 2.89 (dd, J = 7.9, 13.3 Hz, 1H, –CH2), 2.31–2.25
(m, J = 4.5, 13.5 Hz, 1H, –CH2), 1.36 (dd, J = 3.2, 15.6 Hz, 1H, –CH2), 1.31 (m, 1H,
–CH2), 1.28 (d, J = 6.6 Hz, 3H, CH3); 13C NMR (100 MHz, acetone-d6): d 170.7,
135.7, 131.0, 76.9, 74.0, 73.2, 71.5, 45.2, 39.7, 21.2; IR (neat): 3399, 2924, 1717,
1459 cm�1 HRMS m/z [M+Na]+ found 239.0889; calcd 239.0895 for
C10H16O5Na.
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